A FREQUÊNCIA CARDÍACA MÁXIMA EM NOVE DIFERENTES PROTOCOLOS DE TESTE MÁXIMO*

Claudio Gil Soares de Araújo, Mauro Antonio Pinto Machado Bastos, Nelson Luiz Siqueira Pinto e Rubens Sampaio Câmara
Laboratório de Fisiologia, Instituto de Fisiologia
Universidade Federal do Rio de Janeiro — Rio de Janeiro, Brasil

RESUMO

O objetivo deste estudo foi determinar qual seria o protocolo de teste máximo que fosse suficientemente adequado para que cada indivíduo atingisse sua FCM. Quatro jovens assimotomáticos moderadamente ativos do sexo masculino participaram voluntariamente deste estudo. Nove diferentes protocolos foram empregados, um anaeróbico (A), outro progressivo intermitente (1) e um progressivo contínuo (C) em três ergômetros distintos: tapete rolante (TR), cicloergométrie de perna (LE) e cicloergométrica de braço (AE). Em todas as situações foram determinadas a FCM, através da medida de 10 intervalos R-R no traçado eletrocardiográfico e as sensações subjetivas de cansaço muscular (RPEm) e sistêmico (RPEs). A análise de variância e o método de Scheffé mostraram que os protocolos TRI e TRC não diferiam significativamente entre si; entretanto, apresentaram valores mais altos para a FCM que os demais protocolos (p < 0.05). A FCM medida e a prevista não eram significativamente diferentes, embora a oscilação fosse de menos cinco a mais de 5 bpm. O TR fornece valores significativamente mais elevados para a FCM que LE e AE. A FCM apresentou correlações significativas e não significativas, respectivamente, com RPEs e RPEm. Concluímos que a FCM deverá ser obtida individualmente em TR, utilizando um protocolo I ou C, e que a LE parece ser a segunda melhor opção.

INTRODUÇÃO

A frequência cardíaca, isto é, o número de batimentos por minuto de um coração normal é um dos sinais vitais do nosso organismo e de importância fundamental na Clínica Médica, onde é obrigatória a obtenção deste valor em qualquer exame físico de um paciente. A presença de batimentos cardíacos em um ser, é um dos sinais mais eficazes e óbvios da presença de vida neste organismo. As alterações da frequência cardíaca, geralmente, têm implicações importantes na orientação diagnóstica e terapêutica de um paciente.

Entretanto, na área de Ciências do Desempenho, por outras razões, a determinação da frequência cardíaca é extremamente difundida, pois acredita-se que este parâmetro seja o que melhor traduz o “stress” a que o organismo está sendo submetida. Deste modo, praticamente todos os indivíduos envolvidos com a atividade física humana, sejam eles médicos, pesquisadores, técnicos ou atletas, com certeza já experimentaram “contar o pulso” de um atleta em desempenho, ou mais comumente, logo após a interrupção de uma atividade. É comum também a recomendação de certos níveis de frequência cardíaca para a obtenção de um determinado efeito no treinamento.

Nos Laboratórios de Pesquisa, a frequência cardíaca tem tido uma aplicação ampla, principalmente, para a predição de consumo máximo de oxigênio, baseada em nomogramas os quais se apóiam na relação linear existente entre frequência cardíaca e consumo de oxigênio dentro de determinados limites (4, 34).

Normalmente, a frequência cardíaca traduz a velocidade de despolarização do nóculo sino-atrial, e que seria aproximadamente 70 batimentos por minuto (4), caso retratássemos a influência do sistema simpático e parasimpático, onde, o primeiro excita e o segundo inibe a atividade.

* Este trabalho foi realizado no Laboratório de Performance Humana, Serviço de Medicina Desportiva de Universidade de Game Filho, Rio de Janeiro, Brasil, sob a orientação do Prof. Dr. Edmundo Vittas Novais.

Submetido para publicação em agosto de 1980
Aprovado para publicação em agosto de 1980
do nóculo (48). Além destas influências, alterações posturais também são capazes de modificar o valor da frequência cardíaca (4).

Ao contrário da importância dada à frequência cardíaca em repouso e em exercício moderado, menor atenção tem sido atribuída à frequência cardíaca máxima (FCm) de um indivíduo. Lester et al (33) tem especulado que a FCm seria inerente a um determinado indivíduo.

É consenso geral, que a FCm decresce com a idade linearmente (4, 29, 33, 50, 53), variando de 10 batimentos para cada década (15) a 0,41 batimentos por ano (33). A relação entre FCm e idade pode ser predita por equações, sendo as mais comuns: FCm = 220 — idade em anos (45) e FCm = 210 — 0,65 idade em anos (45). Apesar deste fato ser concreto, não se conhece ainda a causa para este declínio, embora dentre os fatores mais prováveis estejam: alterações do nóculo sino-auricular pelo envelhecimento, medo de exercício máximo, aumento da duração do período de relaxamento isovolumétrico do indivíduo mais idoso, alterações neuro-humorais pela falta de treinamento e maior prevalência de aterosclerose periférica (33).

A diminuição da FCm com a idade, provavelmente levaria a um decréscimo do débito cardíaco e consequentemente, em ausência de uma compensação a nível tecidual, a uma redução do VO₂ (consumo de oxigênio máximo) (3).

Klissouras observou um coeficiente de Hest de 0,91 entre a FCm de gêmeos e por outro lado, tem sido preconizada uma correlação de 0,81 entre frequência cardíaca de repouso e FCm, mesmo quando consideramos as amplas variações da primeira com o treinamento (33).

Quando comparamos diversos grupos de indivíduos de diferentes sexos, encontramos que a FCm é significativamente maior para homens do que para moças, sejam sadios, hipertensos ou coronariopatas (50); quando há associação de patologias, por exemplo, pós-infarito do miocárdio e hipertensão arterial, o declínio é maior ainda; pode-se observar ainda uma queda da FCm, até mesmo em hipertensos assintomáticos (11). Ainda neste tópico, crianças que apresentam sintomatologia cianótica, devido a alterações congênitas, atingem menores valores para a FCm (20). Outros fatores poderiam também influenciar a frequência cardíaca no exercício; a presença de um cateter eleva a frequência cardíaca submáxima em aproximadamente cinco batimentos (10) e a determinação invasiva do débito cardíaco tem sido demonstrada sem fator de elevação para a FCm (10). Fatores externos, como a ingestão de álcool, alteram a frequência cardíaca de repouso e submáxima em oito homens sadios, sem entretanto, ter ação significativa sobre a FCm (10). A altitude parece diminuir a FCm (11) embora nesta situação o efeito sugere ser dependente da condição física prévia (40).

A exposição a 45% de oxigênio foi incapaz de alterar a FCm em testes máximos realizados com ambas as pernas, embora diminuísse a FCm quando era executado com somente uma perna (16); em outro experimento, um decréscimo de 6% para a FCm foi provado quando o teste era realizado em ambiente com ar filtrado com uma concentração elevada de ozônio (22).

A relação entre % do VO₂ máximo e % da FCm prevista parece ser válida para todas as idades (24); tem sido extensivamente utilizado em determinado % da FCm para predição de carga e interrupção de testes na ergometria de esforço (2, 24, 33) e como regra geral, considera-se que a frequência cardíaca é um bom parâmetro para a avaliação do grau de "stress" envolvido em a atividade física (32). A FCm é, na maioria das vezes, obtida durante a realização de testes para determinações do consumo máximo de oxigênio; entretanto, sabe-se que diferentes protocolos em diferentes eritrometros podem provocar resultados também distintos para o VO₂ máximo (4, 40) e provavelmente para a FCm.

Em alguns protocolos, a frequência cardíaca atinge o seu patel antes do VO₂, pois a diferença artério-venosa de oxigênio provavelmente continua a aumentar, devido à redistribuição do fluxo sanguíneo (54); por outro lado, é importante compreender que a situação inversa pode ocorrer, isto é, o VO₂ pode atingir seu patel e neste ponto em geral o teste é terminado, sem contudo ter sido atingida a FCm (12). Os testes máximos efetuados com intervalos de poucos dias são, em geral, reproduzíveis e neste aspecto, Smokler et al (42) afirmam que não há diferença significativa entre dois testes máximos realizados em tapete roliante em relação à tolerância ao esforço em pacientes com angina pectoris, o que caracteriza a reprodutibilidade até mesmo no que se refere à sintomatologia clínica.

Nagle et al. (35) sugerem que a relação entre frequência cardíaca e consumo de oxigênio é igual para tapete roliante, cicloergometria de perna e cicloergometria de braço, podendo ser representada por uma única linha. Não obstante, tem sido motivo de controvérsia, o ergômetro e o protocolo que seriam capazes de proporcionar os valores mais elevados para a FCm; alguns trabalhos postulam que a FCm não difere significativamente entre tapete roliante e bicicleta, embora a maioria dos indivíduos atinja valores mais elevados no primeiro; por outro lado, Wicks et al. (51) encontraram diferença significativa entre os dois eritrometros, em pacientes com história de doenças cardiovasculares. Quando se compara a cicloergometria de braço com outros eritrometros, verifica-se que este produz consistentemente menores valores para a FCm (17, 26, 27).

O presente estudo se propõe a: comparar os valores de FCm obtidos em nove diferentes protocolos de teste máximo em jovens de sexo masculino e confrontar os resultados obtidos, com os previstos pela equação de regressão proposta por Jones et al.* (29). 2) sugerir um protocolo de teste máximo mais provável para que a FCm seja atingida, 3) analisar as sensações subjetivas de cansaço local e sistêmicas nos diferentes protocolos de teste máximo, 4) correlacionar a FCm com as sensações subjetivas de cansaço e com alguns parâmetros morfométricos.

Deste modo, pretende-se obter um melhor conhecimento.

* FCm = 210 — .65 idade (anos)
cimento do parâmetro FCM, através de algumas das suas características comportamentais e interrelações com outros parâmetros.

MÉTODOS

Quatro jovens estudantes do sexo masculino, assimétricos de atividades física regular, sem entretanto terem participado de treinamento competitivo nos últimos doze meses, se voluntariaram para participar deste estudo. Todos os indivíduos eram conscientes dos riscos envolvidos na realização desta pesquisa e eram livres para abandonar o projeto em qualquer parte do transcorrer do mesmo. Para uma melhor caracterização dos mesmos, além da idade na forma centesimal, altura e peso, são apresentados, na tabela 1, os dados individuais referentes ao somatotipo antropométrico de Heath-Carter (13).

TABELA 1

<table>
<thead>
<tr>
<th>IDADE (anos)</th>
<th>ALTURA (cm)</th>
<th>PESO (Kg)</th>
<th>ENDO</th>
<th>MESO</th>
<th>ECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.G.</td>
<td>22.28</td>
<td>170.1</td>
<td>60.30</td>
<td>1.98</td>
<td>3.93</td>
</tr>
<tr>
<td>M.A.</td>
<td>25.64</td>
<td>170.5</td>
<td>65.80</td>
<td>1.64</td>
<td>5.62</td>
</tr>
<tr>
<td>N.L.</td>
<td>24.32</td>
<td>173.7</td>
<td>67.40</td>
<td>1.97</td>
<td>4.58</td>
</tr>
<tr>
<td>R.S.</td>
<td>23.12</td>
<td>166.3</td>
<td>54.30</td>
<td>2.31</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Nove diferentes protocolos de teste máximo foram realizados neste estudo. Três ergômetros distintos foram utilizados: cicloergometria de perna (LE), cicloergometria de braço (AE) e tapete rolante (TR). Para cada um dos ergômetros foram empregados três protocolos: intermitente ou descontinuão progressivo (I), contínuo progressivo (C) e anaeróbio (A). A combinação dos três ergômetros e dos três protocolos nos forneceu um total de nove diferentes protocolos de teste máximo. Os testes eram efetuados alternando-se o ergômetro para cada teste e assim disso os quatro indivíduos realizaram sequências diferentes de modo a eliminar a variável efeito do treinamento.

Uma bicicleta ergométrica mecânica Monark foi empregada nos testes de LE e AE, tendo sido mantido um ritmo constante de 50 rotações por minuto, através da cadência dada por um metrôônomo. A altura do selim mais confotável era escolhida individualmente para a LE e na AE, utilizou-se a padronização desenvolvida por Reybrouck et al. (39), a qual recomenda que a articulação gleno-humeral esteja ao nível do eixo de transmissão da bicicleta. O péndulo era constantemente verificado com o intuito de evitar variações importantes na carga de trabalho; nos casos em que a oscilação era muito grande, comumente nos protocolos anaeróbicos, o péndulo era mantido manualmente na carga desejada, tal como foi sugerido anteriormente por Von Dobeln (49).

Os testes de tapete rolante foram executados no Quinto mod. 24-72, utilizando-se sempre uma inclinação igual ou superior a 5%, que é suficiente para compensar a ausência da resistência do vento e pré-requisito para a obtenção de valores máximos para consumo de oxigênio.

O protocolo contínuo constou de incrementos progressivos, a cada dois minutos, de 25 watts (LE), 12.5 watts (AE) e 2,5% de inclinação (TR). No protocolo intermitente progressivo, três cargas de trabalho escalonadas eram, de acordo com experiências anteriores, atribuídas em cada teste, de modo que as duas primeiras cargas, com cinco minutos de duração, fossem submáximas e, que a terceira e última, fosse máxima, ou seja, determinasse a exaustão em cinco minutos ou menos para todos os testados; permitiu um intervalo passivo, sentado ou deitado (TR) de três minutos entre cada uma das cargas. Por outro lado, o protocolo anaeróbio, era escolhido de modo a que o teste durasse entre 30 e 90 segundos. Uma descrição esquemática dos protocolos é feita na tabela 2.

TABELA 2

<table>
<thead>
<tr>
<th>Descrição Sumária dos Protocolos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>37.5 w</td>
</tr>
<tr>
<td>75 w 50 rpm</td>
</tr>
<tr>
<td>87.5 w 5 min/3 min</td>
</tr>
<tr>
<td>100 w</td>
</tr>
<tr>
<td>12.5 w /2min</td>
</tr>
<tr>
<td>150 w 50 rpm</td>
</tr>
<tr>
<td>200 w 5 min/3 min</td>
</tr>
<tr>
<td>TR</td>
</tr>
<tr>
<td>10.8 Km/h 5,5%</td>
</tr>
<tr>
<td>12 Km/h</td>
</tr>
<tr>
<td>13.2 Km/h 5,5%</td>
</tr>
<tr>
<td>5 min/3 min</td>
</tr>
</tbody>
</table>

* Variou para cada indivíduo

Para a realização de todos os testes, os examinados recebiam um grande encorajamento verbal para atingirem o seu máximo real. Todos os testes eram terminados quando os testados atingiam a sua exaustão voluntária.

A sensação subjetiva de cansaço (RPE) descrita por Borg (8), foi modificada para aplicação neste trabalho. Em um estudo independente do nosso, Williams (52) dividiu a RPE em três índices, um dos quais avaliava a sensação local, o segundo a cardiorespiratória e um terceiro analisava o "stress" como um todo. Neste estudo, a RPE foi subdividida em somente duas partes, uma muscular e outra sistêmica. Valores inteiros de 1 a 10 foram utilizados para esta análise, onde 1 correspondia a um mínimo e 10 a um máximo.

A frequência cardíaca era determinada em traçado eletrocardiográfico colhido em um sistema de monitorização eletrocardiográfica Quinton mod. 621-B; o traçado era obtido nos últimos momentos de cada teste e continuado até que a frequência cardíaca decrescesse. A menor distância
para 10 intervalos R-R, com a precisão de 0,5 mm, foi determinada por um único avaliador em todos os testes realizados, exceto em um único teste, que em virtude de falha na agulha do eletrocardiográfico no transcorrer do teste, obteve-se a frequência cardíaca através do cardio-tacômetro do aparelho, o qual, entretanto, tinha se mostrado exato em observações anteriores.

As sensações subjetivas de cansaço muscular (RPEm) e sistêmica (RPEs) eram perguntadas aos indivíduos imediatamente após a conclusão de cada teste.

Os testes foram realizados na segunda metade da parte ou primeira metade da noite, ou seja, entre 15 e 21 horas. Evitou-se a realização de testes nos dias em que os indivíduos tinham se submetido a alguma atividade física importante, imediatamente após uma refeição ou quando eles se apresentavam cansados, desmotivados ou com alguma sintomatologia clínica, tais como gripes, etc...

A temperatura, umidade e pressão atmosférica da sala em que foram realizados os testes, foram cuidadosamente registradas.

No mínimo, 48 horas eram permitidas entre a realização de um teste e outro, tendo o período de estudo sido de 0,19 ± 0,05 anos, no qual os participantes do estudo foram solicitados a manter o seu nível de atividade física o mais constante possível.

A sala onde os testes foram realizados, era munida de todo o material de urgência conforme recomendação do American College of Sports Medicine (2) e em todas as ocasiões havia a presença de um médico nas dependências próximas ao local de execução.

Para a análise estatística dos resultados, utilizou-se o teste de Student para comparações entre suas médias correlatas, análise da variância de duas entradas para comparações entre mais de duas médias, o método de Scheffé para localizar as diferenças significativas encontradas na ANOVA e correlações simples quando duas variáveis eram correlacionadas. Os níveis de probabilidade aceitos como significantes eram 0,05 e 0,01.

RESULTADOS

1) **Frequência cardíaca máxima**

As FCM obtidas para cada um dos testados dos novo protocolos está plotada nas figuras 1, 2, 3, e 4, tendo-se considerado o valor previsto para a FCM calculado pela equação de Jones et al. (29), representada por uma linha tracejada como ponto de referência. Até os resultados constata-se que três dos quatro testados excederam sua FCM prevista em pelo menos três protocolos. A análise da significância para diferenças de médias entre amostras dependentes pelo teste de Student não mostrou diferenças significativas entre o valor previsto e o valor mais elevado obtido para a FCM nos nove protocolos (p < 0,05).

FCm = 210 - .65 idade (anos)

Os resultados gerais dos testes aplicados (média ± desvio padrão) para cada protocolo são apresentados nas tabelas 3, 4, 5, e 6.

| TABELA 3 |
|------------------|----------------|----------------|
| **Resultado da FCM, RPEm e RPEs para os três diferentes ergômetros (X ± SD) (n = 4)** | **AE** | **LE** | **TR** |
| **FC** | 183.08 | 187.75 | 196.92 |
| **RPEm** | 9.67 | 9.75 | 8.63 |
| **(0.27)** | **(0.32)** | **(0.28)** |
| **RPEs** | 7.59 | 8.42 | 9.50 |
| **(0.92)** | **(0.74)** | **(0.23)** |

| TABELA 4 |
|------------------|----------------|----------------|
| **Resultado da FCM, RPEm e RPEs em três diferentes métodos de teste máximo (X ± SD) (n = 4)** | **A** |
| **FC** | 191.83 | 193.25 | 182.67 |
| **(11.27)** | **(10.89)** | **(7.52)** |
| **RPEm** | 9.50 | 9.92 | 8.63 |
| **(0.43)** | **(0.17)** | **(0.94)** |
| **RPEs** | 8.84 | 8.50 | 8.32 |
| **(0.69)** | **(0.69)** | **(0.83)** |

| TABELA 5 |
|------------------|----------------|----------------|----------------|
| **Resultado da FCM, RPEm e RPEs para os indivíduos testados (X ± SD) (n = 4)** | **C.G.** | **M.A.** | **N.L.** | **R.S.** |
| **FC** | 196.66 | 189.22 | 175.67 | 195.56 |
| **RPEm** | 8.78 | 9.22 | 9.56 | 8.89 |
| **(0.44)** | **(1.30)** | **(0.88)** | **(2.26)** |
| **RPEs** | 8.33 | 8.33 | 8.22 | 9.00 |
| **(1.66)** | **(1.32)** | **(1.09)** | **(1.97)** |

| TABELA 6 |
|------------------|----------------|----------------|----------------|
| **Análise da Variância** | **Fonte de Variação** | **Somados Quadrados** | **Graus de Liberdade** | **Quadrados de Médias** | **F** |
| **Frequência Cardíaca Máxima em 9 Diferentes Protocolos de Teste Máximo (n = 4)** | **Entre Indivíduos** | 2085.50 | 3 | 695.17 | 26.65** |
| **Entre Protocolos** | 2499.03 | 8 | 312.38 | 11.97** |
| **Não Explicada** | 626.22 | 24 | 26.09 |
| **Total** | 5210.75 | 35 |

* **p < 0.01**
A tabela 6 nos mostra os resultados da análise de variância (ANOVA) para os nove protocolos, onde foram constatadas diferenças significativas entre os indivíduos e entre os protocolos de teste máximo (p < 0,01). As comparações múltiplas para os indivíduos, mostrou que todos diferiram significativamente entre si, exceto os indivíduos C.G. e R.S. (p < 0,01).

O método de Scheffé (MSC) caracterizou (tabela 7), que praticamente todos os protocolos diferiram significativamente entre si, exceto as comparações efetuadas entre AEI-AEC, AEA-LEA, LEI-TRA e TRI-TRC.

TABELA 7
Resultado das Comparações Múltiplas para
Frequência Cardíaca Máxima

<table>
<thead>
<tr>
<th>AEC</th>
<th>AEA</th>
<th>LEI</th>
<th>LEG</th>
<th>LEA</th>
<th>TRI</th>
<th>TRC</th>
<th>TRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEI</td>
<td>0,00</td>
<td>6,50*</td>
<td>4,00*</td>
<td>9,50*</td>
<td>6,00*</td>
<td>15,75*</td>
<td>14,50*</td>
</tr>
<tr>
<td>AEC</td>
<td>6,50*</td>
<td>4,00*</td>
<td>9,50*</td>
<td>6,00*</td>
<td>15,75*</td>
<td>14,50*</td>
<td>4,75*</td>
</tr>
<tr>
<td>AEA</td>
<td>10,50*</td>
<td>16,00*</td>
<td>0,50*</td>
<td>21,75*</td>
<td>21,00*</td>
<td>11,26*</td>
<td></td>
</tr>
<tr>
<td>LEI</td>
<td>5,50*</td>
<td>10,00*</td>
<td>11,75*</td>
<td>10,50*</td>
<td>0,75*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEC</td>
<td>15,50*</td>
<td>6,25*</td>
<td>6,00*</td>
<td>4,75*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEA</td>
<td>21,75*</td>
<td>20,50*</td>
<td>10,75*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRI</td>
<td>1,26</td>
<td>11,00*</td>
<td>9,75*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0,01

Quando nos detemos na ANOVA (tabela 8), para os três diferentes ergômetros, verificamos uma diferença estatisticamente significativa a 0,01 de probabilidade entre os indivíduos e entre os protocolos. O MSC mostrou novamente que todos os indivíduos diferiam significativamente entre si, exceto o par C.G.-R.S.; para os ergômetros, as diferenças foram significativas para todas as comparações efetuadas (p < 0,01).

TABELA 8
Análise da Variância
Frequência Cardíaca Máxima em 3 Diferentes Ergômetros (n = 4)

<table>
<thead>
<tr>
<th>Fonte</th>
<th>Variação</th>
<th>Soma dos Quadrados</th>
<th>Graus de Liberdade</th>
<th>Quadrado de Médias</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Indivíduos</td>
<td>833,01</td>
<td>3</td>
<td>277,67</td>
<td>25,85**</td>
<td></td>
</tr>
<tr>
<td>Entre Protocolos</td>
<td>396,59</td>
<td>2</td>
<td>198,30</td>
<td>19,48**</td>
<td></td>
</tr>
<tr>
<td>Não Explícada</td>
<td>64,40</td>
<td>6</td>
<td>10,73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1294,00</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** p < 0,01

Figuras 1, 2, 3 e 4 – Frequência cardíaca máxima
Os protocolos I, C e A quando submetidos à ANOVA separadamente (tabela 9), mostraram diferenças significativas para os indivíduos (p < 0,01) e para os protocolos (p < 0,05). No MSC todas as comparações efetuadas entre indivíduos mostraram uma diferença significativa, exceto para o par C.G.-R.S.; por outro lado, nos protocolos, as diferenças entre I-A e C-A eram estatisticamente significativas (p < 0,01) enquanto o par I-C não mostrou diferença significativa (p < 0,05).

A ANOVA empregada no estudo da RPE-s nos três ergômetros utilizados neste trabalho, só encontrou diferenças significativas entre os protocolos (p < 0,05). Novamente, entretanto, não foi possível localizar esta diferença através do MSC.

Quando os diferentes métodos de teste máximo eram estudados, através da ANOVA, nenhuma diferença significativa seja entre os indivíduos ou protocolos foi encontrada (p < 0,05) para a RPE-s.

3) Sensação subjetiva de cansaço local:

Nas tabelas 11 e 12 vemos os resultados da ANOVA e do MSC empregados na análise do comportamento da RPE-m nos nove protocolos; somente entre os protocolos foi observada uma diferença significativa (p < 0,05), a qual deu-se as comparações entre AEC-TRA, AEA-TRA, LEI-TRA, LEA-TRA e TRC-TRA (p < 0,05).

2) Sensação subjetiva de cansaço sistêmico:

A ANOVA aplicada para analisar a RPE-s nos nove protocolos (tabela 10), falhou em apontar diferenças significativas para os indivíduos, embora uma diferença significativa ao nível de probabilidade de 0,05 tenha sido encontrada entre os protocolos; no entanto, o MSC não descobriu nenhuma diferença significativa entre os pares de protocolos comparados.

TABELA 9
Análise da Variância
Frequência Cardíaca Máxima em 3 Diferentes Métodos de Teste Máximo (n = 4)

<table>
<thead>
<tr>
<th>Fonte da Variação</th>
<th>Somas dos Quadrados</th>
<th>Graus de Liberdade</th>
<th>Quadrado de Médias</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Indivíduos</td>
<td>833,01</td>
<td>3</td>
<td>277,87</td>
<td>22,59**</td>
</tr>
<tr>
<td>Entre Protocolos</td>
<td>263,31</td>
<td>2</td>
<td>131,91</td>
<td>10,73*</td>
</tr>
<tr>
<td>Não Explicada</td>
<td>73,75</td>
<td>6</td>
<td>12,29</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1170,57</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0,05
**p < 0,01

TABELA 10
Análise da Variância
RPE-sistêmica em 9 Diferentes Protocolos de Teste Máximo (n = 4)

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Somas dos Quadrados</th>
<th>Graus de Liberdade</th>
<th>Quadrado de Médias</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Indivíduos</td>
<td>3,44</td>
<td>3</td>
<td>1,15</td>
<td>1,27</td>
</tr>
<tr>
<td>Entre Protocolos</td>
<td>29,72</td>
<td>8</td>
<td>3,72</td>
<td>4,09*</td>
</tr>
<tr>
<td>Não Explicada</td>
<td>21,81</td>
<td>24</td>
<td>0,91</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>54,97</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0,05

TABELA 11
Análise da Variância
RPE-Muscular em 9 Diferentes Protocolos de Teste Máximo (n = 4)

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Somas dos Quadrados</th>
<th>Graus de Liberdade</th>
<th>Quadrado de Médias</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Indivíduos</td>
<td>4,11</td>
<td>3</td>
<td>1,37</td>
<td>1,28</td>
</tr>
<tr>
<td>Entre Protocolos</td>
<td>38,56</td>
<td>8</td>
<td>4,82</td>
<td>4,60*</td>
</tr>
<tr>
<td>Não Explicada</td>
<td>26,64</td>
<td>24</td>
<td>1,07</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>68,31</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0,05

TABELA 12
Resultados das Comparações Múltiplas para RPE-Muscular

<table>
<thead>
<tr>
<th></th>
<th>AEC</th>
<th>AEA</th>
<th>LEI</th>
<th>LEC</th>
<th>LEA</th>
<th>TRI</th>
<th>TRC</th>
<th>TRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0,75</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>0,25</td>
<td>0,75</td>
<td>2,75</td>
</tr>
<tr>
<td>AEC</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,50</td>
<td>0,00</td>
<td>0,50</td>
<td>3,50*</td>
</tr>
<tr>
<td>AEA</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>3,25*</td>
<td></td>
</tr>
<tr>
<td>LEI</td>
<td>0,00</td>
<td>0,00</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>3,25*</td>
<td></td>
</tr>
<tr>
<td>LEC</td>
<td>0,00</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>3,25*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEA</td>
<td>0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>3,25*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRI</td>
<td>0,50</td>
<td>2,00</td>
<td>3,50*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0,05
A RPE-m apresentou diferenças significativas na ANOVA (tabela 13) entre os três ergômetros (p < 0,05); todavia, o MSC não foi suficientemente forte para apontar as diferenças quando os ergômetros eram analisados em duplas.

TABELA 13

Análise de Variância
RPE-Muscular em 3 Diferentes Ergômetros (n=4)

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Soma dos Quadrados</th>
<th>Graus de Liberdade</th>
<th>Quadrado de Médias</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Indivíduos</td>
<td>1,37</td>
<td>3</td>
<td>0,46</td>
<td>2,39</td>
</tr>
<tr>
<td>Entre Protocolos</td>
<td>2,90</td>
<td>2</td>
<td>1,45</td>
<td>7,63*</td>
</tr>
<tr>
<td>Não Explicada</td>
<td>1,15</td>
<td>6</td>
<td>0,19</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5,42</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0,05

Os três diferentes métodos de teste máximo, mostraram diferenças significativas entre si, conforme os resultados da ANOVA apresentados na tabela 14 embora não tenha sido possível localizar esta diferença.

TABELA 14

Análise de Variância
RPE-Muscular em 3 Diferentes Métodos de Teste Mínimo (n=4)

<table>
<thead>
<tr>
<th>Fonte de Variação</th>
<th>Soma dos Quadrados</th>
<th>Graus de Liberdade</th>
<th>Quadrado de Médias</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Indivíduos</td>
<td>1,37</td>
<td>3</td>
<td>0,46</td>
<td>1,44</td>
</tr>
<tr>
<td>Entre Protocolos</td>
<td>3,24</td>
<td>2</td>
<td>1,62</td>
<td>4,98*</td>
</tr>
<tr>
<td>Não Explicada</td>
<td>1,95</td>
<td>6</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6,56</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0,05

4) Condições ambientais da sala de ergometria:

Durante os 36 testes efetuados, a temperatura foi de 20,47 ± 0,98°C, variando de 19,0 a 22,50°C. A umidade relativa do ar situou-se entre 51,0 e 68,0%, com média de 57,57 e um desvio padrão de 3.94%. A pressão atmosférica da sala de ergometria oscilou entre 758 e 768 mmHg com um valor médio e desvio padrão de 763,33 ± 241 mmHg.

5) Correlação entre FCm, RPE-s e RPE-m:

Na tabela 15 são mostrados os coeficientes de correlação obtidos entre FCm, RPE-s, RPE-m para cada um dos indivíduos e para todo o grupo. Verificou-se que a FCm para os nove protocolos do indivíduo N.E. era negativamente correlacionada com a RPE-m (p < 0,05) que todas as correlações efetuadas entre FCm e RPEs eram positivas e estatisticamente significativas.

TABELA 15

Coeficientes de correlação entre FCm, RPE-m e RPE-s

<table>
<thead>
<tr>
<th></th>
<th>C.B.</th>
<th>M.A.</th>
<th>N.L.</th>
<th>R.S.</th>
<th>Todos</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCm</td>
<td>.04</td>
<td>.00</td>
<td>-.73*</td>
<td>.25</td>
<td>.03</td>
</tr>
<tr>
<td>RPE-s</td>
<td>.86**</td>
<td>.71*</td>
<td>.69*</td>
<td>.84*</td>
<td>.86**</td>
</tr>
</tbody>
</table>

* p < 0,05
** p < 0,01

6) Correlação entre FCm e parâmetros morfológicos:

Os resultados das correlações simples efetuadas entre os três componentes primários do físioc, altura e peso com a FCm não mostraram coeficientes estatisticamente significantes, até mesmo quando se considerou a FCm prevista (p > 0,05) como pode ser observado na tabela 16.

TABELA 16

Coeficientes de correlação entre parâmetros morfológicos e a FCm obtida e FCm prevista (n=4)

<table>
<thead>
<tr>
<th></th>
<th>ENDO</th>
<th>MESO</th>
<th>ECTO</th>
<th>ALTURA</th>
<th>PESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCm</td>
<td>.13</td>
<td>-.37</td>
<td>.48</td>
<td>.55</td>
<td>-.61</td>
</tr>
<tr>
<td>FCm prevista</td>
<td>.64</td>
<td>-.80</td>
<td>.81</td>
<td>-.37</td>
<td>.64</td>
</tr>
</tbody>
</table>

DISCUSSÃO

A FCm tem sido considerada como altamente reproduzível de teste a teste, embora uma ampla variação interindividual tenha sido observada (53), os valores obtidos, em geral, se encontram dentro do limite de confiança de 95% (15, 33, 53), apresentando segundo Astrand (4) um desvio-padrão de ± 3 bpm. Entretanto, ao contrário da bradicardia de repouso, que é atribuída a uma diminuição da influência simpática com pouca ou nenhuma alteração da influência vagal (6), não se sabe a razão para a existência de uma FCm (40).

O nosso estudo, confirma a ampla variabilidade entre indivíduos para a FCm, tendo nossos valores oscilado entre 189 e 214; em todas ANOVAS realizadas para FCm verificaram-se diferenças significativas entre os indivíduos excepto nas comparações efetuadas entre C.G. e R.S.; estes resultados se assemelham aos descritos por Pollock (38) em corridores...
de elite obtidos em um protocolo progressivo contínuo a cada dois minutos em TR. Por outro lado, a FCM prevista não diferiu significativamente da FCM obtida, entretanto, a utilização da FCM prevista para efeito de previsão de consumo máximo de oxigênio, tem sido lembrada por Astrand (4) como fator de erro para a previsão, e Wilmore (53) acrescenta que a FCM predita para um indivíduo pode ser de um erro considerável, recomendando que não se dava empregar testes submáximos sem termos conhecimento prévio da FCM. Neste aspecto, Sidney et al. (41) relatam o caso de um homem de 64 anos de idade, que alcançava "steady-state" em torno de 180 bpm. Destes exemplos e dos nossos resultados fica evidente a necessidade da determinação objetiva deste parâmetro, quando se pretende uma maior acurácia individual, resguardando o uso das tabelas de estimativa para estudos populacionais onde a ampla variabilidade individual seria menos relevante devido ao cancelamento do fator de erro. Em adendo, podemos citar Astrand (4) que lembra ser o desvio-padrão da FCM de aproximadamente 10 bpm, o que equivale a dizer que para uma população de 10 indivíduos de 25 anos de idade, 5 deles atingem FCM inferiores a 185 ou superiores a 215, para um valor médio previsto de 195 bpm.

Um ponto bastante discutido, é o que se refere às possíveis alterações da FCM com o treinamento; destrainados, em geral, apresentam valores mais elevados para a FCM que treinados (33, 40), e Shephard (40) relata que existe uma correlação negativa entre FCM e capacidade aeróbica, embora, os indivíduos treinados apresentem uma FCM muito constante (64). Em contraposição a esta idéia, Bushirik (12) commenta que a FCM em atletas sobretudo condicionados não é diferente da encontrada em sedentários e sugere que a FCM não varia importante mente com o treinamento, o que também foi constatado por Ekblom et al. (18) após quatro meses de treino. Pollock (37) mostrou, em contrapartida, que haviam alterações com o treinamento, e que estas variações eram mais relevantes quando a FCM era superior a 180 bpm e Patton (36) encontrou resultados similares para a FCM em homens de meia-idade com relação ao treinamento.

Se a FCM é realmente menor no atleta ou se ela decresce com o treinamento, é ainda motivo de pesquisa, assim como a explicação para este fato. Algumas hipóteses têm sido sugeridas: Pollock (37) acredita que a redução da FCM com o treino é provavelmente devido ao resultado de certas adaptações do coração e sistema nervoso autônomo para alcançar um débito cardíaco ótimo, enquanto, Lester et al. (33) supõem que haja evidência indireta para uma redução na concentração de catecolaminas à nível de miocárdio e descartam a hipótese de aumento do tonus vagal, pois a administração de atropina não altera a FCM. Outra hipótese foi sugerida por Hermansen e Andersen (25), que interpretam o menor valor para a FCM no atleta, como sendo devido ao fato de que o coração não é completamente ativado durante um esforço exaustivo deste atleta. Isto vem de encontro à existência de uma correlação entre frequência cardíaca e consumo de oxigênio pelo miocárdio (30). Em nosso estudo, entretanto, a sua pequena duração, a ordem randomizada dos testes e a manutenção de níveis constantes de atividade física entre os participantes do projeto, parece nos assegurar que a ação do treinamento sobre a FCM não influiu de modo relevante sobre os nossos dados.

Poderia ser suspeitado que a níveis elevados de FCM, por exemplo: 200 bpm, o enchimento ventricular estaría de tal modo prejudicado que o volume sistólico decresceria; entretanto, Astrand (4) afirma que o enchimento é adequado mesmo a 200 bpm, e em outro estudo efetuado (5), constatou-se que o volume sistólico chegava a aumentar em uma variação de frequência cardíaca de 202 para 207 bpm e que não havia correlação significativa entre o volume cardíaco e a FCM.

As condições ambientais da sala de ergometria foram cuidadosamente controladas e se enquadraram aproximadamente dentro dos valores preconizados por outros autores (4, 46) para testes submáximos.

O que poderia ser considerada a maior limitação deste estudo, refere-se a pequena amostra estudada, entretanto, quando realizamos testes máximos o fator motivação é de primordial importância (26, 46) e para que os resultados obtidos fossem os mais fidedignos possíveis, somente quatro indivíduos envolvidos em pesquisa, que conheciam e acreditavam na relevância do projeto, foram estudados de modo a assegurar que os índices de motivação fossem elevados. Sendo assim, o que parecia ser uma deficiência, na realidade traduziu uma qualidade. Neste aspecto de motivação é a opinião dos testados, que o encorajamento verbal foi de importância fundamental para que o máximo fosse realmente atingido em cada teste.

A determinação eletrocardiográfica da FCM, através da contagem de 10 intervalos R-R, forneceu a precisão de uma sínfise; como a leitura foi executada por somente um único avaliador, podemos considerá-la como metodologicamente adequada.

Hermansen e Saltin (26) e Reybrouck et al. (39) recomendam que não se realize mais de um teste máximo por dia, deste modo, neste estudo pelo menos 48 horas eram permitidas entre a execução de dois testes.

Os indivíduos testados eram moderadamente ativos, de modo que não se pode sugerir um efeito de treinamento pela execução dos testes e tal fato pode ser colaborado pela ausência de dorres "musculares" (tecido conjuntivo) retardadas após os testes em todos os testados. Nenhuma sintomatologia clínica importante, foi verificada no decorrer deste estudo em nenhum dos testados, embora, um dos indivíduos tenha apresentado extrastíole ventricular esporádico em repouso, que desapareceu durante o esforço e reapareceu na recuperação, e em um outro, descobriu-se, incidentalmente, durante a leitura do ECG para determinação da FCM, uma extrastíole ventricular isolada durante o último estágio do protocolo TRI. Nesta ocasião, a frequência cardíaca era de 213 bpm; tal se sucedeu sem qualquer sintomatologia e permanece até agora sem maior justificativa, parecendo ser um achado isolado sem maior significado clínico. Em nenhum
dos 36 testes realizados, verificou-se qualquer indicação, eletrocardiográfica ou clínica, para a interrupção do teste, tendo todos os testes sido finalizados devido a exaustão fisiológica; além disso, nenhum sintoma, a parte dos comumente encontradas em um exercício máximo, foi observado nos testados durante ou após os testes. Em decorrência disto, admitimos que a realização de testes máximos em jovens assintomáticos moderadamente ativos parece ser isenta de riscos importantes, o que está de acordo com a posição adotada pelo American College of Sports Medicine (2).

Foram utilizados nesse estudo três ergômetros: o TR, a LE e a AE. Propositalmente, seguiu-se os mesmos ergômetros empregados por Bobbert (7) em uma publicação anterior.

Nesta pesquisa procurou-se não seguir nenhum protocolo publicado em específico, de modo que as conclusões pudessem ser válidas para um determinado tipo de teste, ou seja, intermitente, etc. e para um determinado ergômetro. Entretanto, algumas regras básicas foram seguidas na elaboração destes protocolos; no TR utilizou-se uma inclinação igual ou superior a 5,5%, pois nesta angulação, obtém-se cerca de 200 ml de O₂ a mais para o consumo máximo de oxigênio (26). O TR apresenta uma série de vantagens sobre os outros ergômetros e Erickson et al. (19) recomendam a sua utilização prioritária, pois a habilidade motora e aprendizado parecem influir menos, a carga é fixa e independe do indivíduo e a carga de trabalho é automaticamente ajustada ao tamanho corporal. A eficiência mecânica parece ser aproximadamente igual para as diferentes inclinações (19). Seguiu-se a orientação de Astrand (4), para a determinação do tempo de dois minutos para cada estágio no protocolo C e de cinco minutos para que um “steady-state” fosse obtido em cada estágio do protocolo I.

Em um trabalho recentemente apresentado (47), três protocolos eram feitos em LE variando-se a duração da carga e o incremento em cada estágio e serviram de base para a organização do nosso protocolo.

A padronização de 50 bpm (7) foi empregada neste projeto, embora Reybrouck et al. (39) referem que 60 bpm facilita a execução do teste em AE devido a diminuição do torque em cargas máximas.

O consumo de oxigênio não foi determinado neste estudo, pois de acordo com os comentários apresentados na introdução deste trabalho, não existe uma clara relação entre VO₂ máximo e FCM. Glasford et al. (23) tem relatado a possível existência de mais de um pátio para o VO₂, o que certamente induziria a subestimação do consumo máximo de oxigênio e provavelmente da FCM.

Na análise dos nossos resultados, verificamos que os protocolos TRI e TRC apresentavam os maiores valores para a FCM e não diferiam significativamente entre si, quando nos referimos aos ergômetros, observamos que o TR apresenta valores mais elevados para a FCM que a LE, que por sua vez é superior a AE, o que confere com os dados de Steinberg et al. (43) que encontraram 11 bpm a menos na AE quando comparada ao TR. Os protocolos I e C não diferiam significa-

ativamente, mas eram superiores ao A, o que concorda com Buskirk (12) que afirma que a FCM alcança um nível máximo em torno de 1,5 minuto, podendo não se alargar com a continuação do exercício ou aumentar ligeiramente até à exaustão. Baseados nestes dados, recomendamos a obtenção da FCM em TR através de um protocolo I ou C, ficando na impossibilidade de utilização deste ergômetro, a LE como a segunda melhor opção de escolha.

Berg e Linderholm (9) afirmam que a percepção subjetiva de cansaço pode ser usada para indicar a intensidade relativa do esforço e que a FCM seria bastante próxima dos mais altos valores de sua escala. Se indivíduos de diferentes FCM são comparados, a sensação subjetiva de cansaço pode representar melhor o stress do que a frequência cardíaca. A percepção subjetiva do esforço tem uma alta correlação com a frequência cardíaca em atletas e sedentários, com os coeficientes oscilando entre 0,08 e 0,85 (14). Em nossa opinião, a sensação subjetiva de cansaço é melhor expressa se dividida em dois componentes, um local e o outro sistêmico.

A nossa análise estatística apresentou diferença significativa entre os protocolos para a RPEs e RPEm, sem entretanto, demonstrar diferenças estatísticas entre os indivíduos. Estes elementos nos levam a supor que a motivação era similar entre os testados. Por outro lado, a MSC não localizou as diferenças significativas entre os nove protocolos para as RPEs e RPEm; podemos sugerir que para as variáveis de análise subjetiva, um nível de probabilidade de 0,05 seria elevado, podendo induzir a erros de interpretação do tipo I. Se considerarmos o nível de significância de 0,01, nenhuma diferença significativa seria demonstrada pela ANOVA.

Uma única conclusão pode, ao nosso ver, ser feita a partir destes resultados e refere-se a diferença significativa observada na tabela 14, onde o protocolo TRA induz significativamente menos stress local do que praticamente todos os outros protocolos; isto talvez tenha ocorrido em decorrência de que em provas máximas de características anaeróbicas, que utilizam grandes grupos musculares, os fatores sistêmicos poderiam ser os desencadeantes da exaustão.

A tabela 15, nos mostra que não há correlação entre FCm e RPEm, e sim entre FCm e RPEs, permitindo deduzir que os fatores que influenciam a RPE em testes máximos têm origem sistêmica, como constatado em todos os testados. Deste modo, recomendamos a subdivisão da RPE em componentes locais e sistêmicos em todo estudo que envolva atividade física a nível máximo e que a sensação subjetiva de cansaço seja avaliada.

Por outro lado, nenhuma correlação significativa foi encontrada entre os parâmetros morfológicos, que eram representados pelos três componentes primários do físico humano — endomorfia, mesomorfia e ectomorfia — altura e peso e a FCm, seja medida ou prevista; estes resultados concordam com os obtidos por Lester et al. (33) para peso, altura e superfície corporal, em relação à FCm. Entretanto, achamos prematura uma conclusão definitiva neste tópico, pois a nossa amostra nos parece insuficiente para tal.
Podemos comentar que, em concorrência com Ferreira et al. (21) parece ser possível realizar trabalhos com característica predominantemente aeróbica em uma frequência cardíaca superior a 180 bpm durante um período relativamente longo, como foi observado nos estágios intermediários dos nossos protocolos para os indivíduos C.G. e R.S. Dentre os problemas levantados por esse estudo, merecerão atenção no futuro, as diferenças entre os dois sexos, a determinação do débito cardíaco e do volume sistólico e a influência dos fatores ambientais sobre a FCM.

Uma ampla aplicação prática pode ser obida neste trabalho e refere-se a necessidade da determinação acurada da FCM de atletas e pacientes em reabilitação cardíaca para a prescrição e monitorização da intensidade do treinamento em níveis submáximos de trabalho.

Finalizando recomendamos que o termo FCM seja substituído pela nomenclatura "mais alta frequência cardíaca registrada", como também proposto por Hermansen e Andersen (25).

CONCLUSÕES

Embora o número de indivíduos estudados seja pequeno, parecem, dentro do corpo de conhecimento existente em fisiologia do exercício e dos resultados deste estudo, serem válidas as seguintes conclusões:

1. O TR é o ergômetro mais indicado para a obtenção da FCM e em ausência deste deve-se preferir a LE & AE.
2. Protocolos I e C no TR, são igualmente adequados para a obtenção da FCM.
3. Embora, a FCM prevista não difira significativamente da FCM medida, a ampla variabilidade encontrada levou-nos a recomendar a sua determinação individual principalmente quando uma maior acurácia for exigida como no caso de atletas de competição e de pacientes.
4. Não, parece existir diferença significativa para os diversos protocolos entre a RPEs e a RPEm.
5. A RPEs se correlaciona significativamente com a FCM.
6. A RPEs não se correlaciona significativamente com a FCM.
7. Dentro das limitações do número de elementos estudados os componentes do somatotipo, altura e peso não se correlacionaram significativamente com a FCM.

AGRADECIMENTOS

Os autores são gratos à colaboração e empenho nas soluções do desenvolvimento estatístico deste estudo aos Professores Maurício F. Aguiar (BNH) e Sandra Caldeira (LAFISCS).

C

ABSTRACT

The aim of this study was to determine which maximal test protocol should be adequate to each subject attain his HRm. Four male students, asymptomatic, moderately active, voluntary participated of this study. Nine different protocols were employed, an anaerobic (A), an intermittent progressive (I), and a continuous progressive (C) in three distinct ergometers: treadmill (TR) leg ergometry (LE), and arm ergometry (AE). In all cases, the HRm was determined electrocardiographically by measuring 10 R-R intervals and the rates of perceived exertion in the muscle (RPEm) and systemic (RPEs) were also obtained. The ANOVA two-way and the Scheffé method showed that the TRI and TRC protocols did not differ significantly to each other, however, they showed higher values to HRm than the other protocols (p < 0.05). The HRm measured and predicted were not significantly different at trough, a range of minus five to plus 18 bpm was observed. The TR provided significantly higher values to HRm than LE and AE (p < 0.05). The Hrm showed significant and non-significant correlations, respectively, with RPEs and RPEm. It was concluded that the HRm must be determined individually in TR, utilizing l or C protocol, and that the second best option is the LE.

REFERÊNCIAS BIBLIOGRÁFICAS

5. ASTRAND, P.O., T.E. Cuddy, B. SALTIN and J. STENBERG - Cardiac output during submaximal and maximal work. J.

24. HELLESTEIN, H.K. and R. ADER — Relationship between percent maximal oxygen uptake (%max VO2) and % maximal heart rate (NMTH) in normals and cardiac (ASHD). Circ. 44 (suppl II): 117-8, 1971.

45. SUTTON, J.R. and N.L. JONES — Exercise testing in health and disease. Mc Master University, Hamilton.

46. TAYLOR, H.L., BUSHKIRK, A. HENSCHEL. — Maximal oxygen intake as an objective measure of cardio-respiratory performance.

